
Dr. Moustafa Alzantot

Information System Design
Lecture 3:

UML class diagram exercise

Can you read this ?

UML class diagram exercise

Can you read this ?

UML class diagram exercise

Can you read this ?

UML class diagram exercise

Can you read this ?

More on inheritance (generalization)

Some OO programming languages, like Java supports only inheritance from a
single parent class.

Other languages, such as C++ and Python, allow inheritance from multiple
classes.

Inheritance from multiple parents can cause “diamond problem”.

More on inheritance (generalization)

diamond problem: ambiguity that arises when

• two classes B and C inherit from A

• class D inherits from both B and C.

•If there is a method in A that both B and C
have overrides, and D does not override it.
Then which version of the method does D
inherit ?

More on inheritance (generalization)

•Different programming languages have
different ways to deal with diamond
problem.
•C++ : virtual inheritance* .

•Python: uses the list of classes to inherit
from as ordered list.

•Java: disallow multiple inheritance.

•* Virtual Inheritance: https://en.wikipedia.org/wiki/Virtual_inheritance

https://en.wikipedia.org/wiki/Virtual_inheritance

Interfaces

•Interface (in Java): a type that declares only
method signatures with no attributes,
constructors or method bodies.

•Interface specify the expected behaviors via
method signatures but doesn’t provide any
implementation details.

•Interfaces are represented in UML class diagram
in similar ways to class diagrams but adding the
<<interface>> to the top of interface name.

Interfaces

•A class that implements an interface must provide
implementation for that interface methods.

•An interface is like a contract to be fulfilled by the
implementing class.

•Interaction between an interface and a class that
implements it is represented as a dot-arrow where
the interfaces touches the head of the arrow.

Interfaces

•Java interfaces (same way as abstract classes in C++) cannot be
instantiated.

•A class that implements as many interfaces as needed.

•An overlapping method signature is not a problem, because
interface doesn’t provide an implementation and the
implementing the class will have to implement it itself.

SOLID design principles

SOLID is an acronym for five design principles :

•Single Responsibility Principle (SRP)

•Open-Closed Principle (OCP)

•Liskov Substitution Principle (LSP)

•Interface Segregation Principle (ISP)

•Dependency Inversion Principle (DIP)

•These principles were introduced by Robert
Martin in his articles and book “Clean Code”.

Single Responsibility Principle

Single Responsibility Principle states :

A class should have only one reason to
change.

• If the class has more than one responsibility,
then there will more than one reason for it
change when requirements change.

•When responsibilities become coupled, a
change to one responsibility may impair the
ability of the class to perform others.

Single Responsibility Principle

Example

Rectangle class has two responsibilities.

•Computes the area of rectangle

•Renders a rectangle on the screen

•It is being used by two applications
ComputationalGeometryApplication and GraphicalApplication

Source : Agile Software Development, Principles, Patterns and Practices

Single Responsibility Principle

Example

Why is this a violation of the SRP ?

Single Responsibility Principle

This design violates SRP in many ways

•We must include GUI in ComputationalGeometryApplication which
doesn’t need it.

•A change on how rendering happens in the screen, will require re-building, re-
deploying and re-testing ComputationalGeometryApplication.

Source : Agile Software Development, Principles, Patterns and Practices

Single Responsibility Principle

•A better design is to separate responsibilities

•Computational parts of Rectangle moves into a separate class 
GeometricRectangle and then
ComputationalGeometryApplication need to depend only on
this class.

Source : Agile Software Development, Principles, Patterns and Practices

Single Responsibility Principle

•A common violation of SRP, Employee class has both business logic
and persistence control.

•Business logic changes too often the persistence control, do we
need to rebuild and retest the persistence part every time we change
it ?

•What if we want to change way data is stored ?

Source : Agile Software Development, Principles, Patterns and Practices

Open-Closed Principle

•The Open-Closed Principle

Software entities should be open for extension, but closed for modification.

Modules that satisfy (OCP) principle are : 

Open for extension: this means their behavior can be extended. If the requirements of the application
change, we can extend the module with new behaviors to satisfy the requirements change.

Closed for modification: extending the behavior of the module doesn’t result in changes to source
or binary of the module. The binary executable version (e.g. DLL or java JAR) remains unchanged.

Open-Closed Principle

How can a module be both open for extension and closed for modification at the
same time ?

Use abstractions and Polymorphism. Abstractions are abstract base classes and that could
be extended by an unbounded group of possible behaviors through derivative classes.

A module that relies on abstract class is closed for modification because the abstract class
remains unchanged. Yet the behavior can be extended by creating a new derivative of the
abstraction.

Open-Closed Principle

Both Client and Server are concrete classes.

The Client uses Server class, if we wish to change a different server
object, the Client class must be changed.

Source : Agile Software Development, Principles, Patterns and Practices

Open-Closed Principle

Client needs some work to get done, it can describe it in terms of
abstract interface “ClientInterface”.

Sub-types of ClientInterface can implement the interface in any
manner the choose.

Source : Agile Software Development, Principles, Patterns and Practices

